If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+4w-616=0
a = 2; b = 4; c = -616;
Δ = b2-4ac
Δ = 42-4·2·(-616)
Δ = 4944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4944}=\sqrt{16*309}=\sqrt{16}*\sqrt{309}=4\sqrt{309}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{309}}{2*2}=\frac{-4-4\sqrt{309}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{309}}{2*2}=\frac{-4+4\sqrt{309}}{4} $
| 2x+170=10 | | 5x+25x=75 | | z/9=-2 | | 12=15-m | | 11q+5q+3q-10q=9 | | 2×-3(x-2)=5x-6(x-1) | | 16j-17j-17j=18 | | 3x-5=x+3 | | 9a-11=-10+12a | | 10x+5=5x+6 | | 5x-6=3x+8 | | (2n*2)/2^-5=2^2 | | 3x-5=2x-3 | | 7(7g=9)=6(4g+6) | | 3(7r-36)=4(9r+14) | | 39+6y=2y-7 | | 6z-6=18 | | 7+5x=17 | | 6+3x=12 | | 25-s=11 | | 0.5x+77=180 | | 7x-19=41-5x | | 9x–8=-15-4x | | 3(2x-3)+8=3-2(1-3x) | | X^3-7x-51=0 | | 4a+10=2a | | 0.4x+76=90 | | (x-5)/4=12 | | n | | 10x^2+x-15=0 | | 6y-15=2y+57 | | 100-5x=3x+92 |